
~ Pergamon
Int. J. Solids Structures Vol. 31, No.9. pp. 1181-1206, 1994

© 1994 Elsevier Science Ltd
Printed in Great Britain. All rights reserved

0020-7683/94 $6.00 + .00

0026-7683(93)EOO4o-O

COUPLED CREEP-ELASTOPLASTIC-DAMAGE
ANALYSIS FOR ISOTROPIC AND ANISOTROPIC

NONLINEAR MATERIALS

XIKUI LI
Research Institute of Engineering Mechanics, Dalian University of Technology,

Dalian 116024, P.R. China

and

P. G. DUXBURY and PAUL LYONS
FEA Ltd, 66 High Street, Kingston upon Thames, Surrey KTI IHN, U,K.

(Received II February 1993; in revised/orm I December 1993)

Abstract-This paper deals with the computational aspects of a coupled creep-e1astoplastic-damage
analysis for anisotropic, and as a special case isotropic nonlinear materials. A three phase backward
Euler integration algorithm for stress update is proposed. For anisotropic nonlinear materials a
general direct stress return mapping algorithm. utilising Newton-Raphson iteration, is derived. The
stress vector and scalar variables quantifying the incremental creep, plasticity and damage are
updated simultaneously. For isotropic materials the elasto-plastic stress update algorithm for plane
stress by letteur (1986, Engng Compo 3, 251-253) is extended to include creep and damage. In
addition, a simple stress algorithm for the general three-dimensional isotropic case is also presented.
The resulting algorithms are suitable for inclusion in general structural analysis codes. The consistent
tangent matrix is also formulated for use in a global Newton iterative procedure, in which structural
displacements are sought as the problem unknowns. Examples are given using the general purpose
code LUSAS in which the algorithms have been implemented,

I. INTRODUCTION

Although this paper covers the combined integration of creep, damage and plasticity
attention is focused on the damage process, since its inclusion is an extension to earlier
work covering combined creep and plastic behaviour presented by Lyons et al. (1992).

The phenomenon of initiation and growth of cavities and microcracks in a material
subjected to external forces is called "damage". Since the pioneering works of Kachanov
(1958) and Rabotnov (1963) a new concept, called "continuum damage mechanics", has
been introduced and widely accepted to describe such progressive material degradation
(material damage). It is assumed that a reduction in the net area due to growth of cavities
is the principal driving mechanism.

Continuum damage mechanics is based on the thermodynamics of an irreversible
process (Chaboche, 1988a,b; Lemaitre, 1985; Bazant, 1988) and the internal state variable
theory. Simo and Ju (l987a,b) have shown that material behaves isotropically for the case
of ductile damage. However, for anisotropic damage a damage tensor must be utilized. In
the following, attention will be restricted to the isotropic damage case for which it suffices
to consider an internal scalar damage variable d. The value d = 0 corresponds to the
undamaged state, whereas a value d(t) E (0, de) corresponds to a damaged state, with the
value d(t) = de defining complete local rupture. de is a given constant and can be assumed
to lie in the range 0.2 ::::; de ::::; 0.8 for metals.

The work on continuum damage theories has been published extensively and applied
to both ductile and brittle materials. In this paper we will follow a stress-based continuum
damage model proposed by Simo and Ju (l987a,b). It is based on the thermodynamic
complementary free potential and results in an additive split of strain vector into the elastic
and the inelastic strain parts, whereas the strain-based damage model is based on the free
energy potential and results in an additive split of stress vector into initial and inelastic
stress parts. The former approach is computationally very efficient and easy to implement
in programs which are strain driven.
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The damage criterion can be postulated as

gC'i,l r ) = li-Ir ~ 0, (1)

where Ii is a norm defined according to the stress-strain state and the damage mechanism
assumed for the material and Ir is the damage threshold at current time t. In the present
work the norm Ii proposed by Oliver et al. (1990), which is a norm of the elastic comp­
lementary energy with consideration of the difference between compressive damage strength
and tensile damage strength, is employed

where De is the elastic modulus matrix, (1 is the current stress, and y is given by

1-0
y=O+-,

n

(2)

(3)

where n is the ratio of the compressive over the tensile damage strength. These damage
strengths are the compressive and tensile stresses at which degradation of elastic modulus
commences. 0 is defined as

3

L (ai
)

o=_i="'-3
1
__

L lail
i= I

Here ai(i = I, 2, 3) are principal undamaged stresses and

(4)

(5)

Setting the coefficient y == 1 expression (2) becomes the norm used in the Simo and Ju
(1987a,b) damage model.

If or denotes the initial damage threshold of the material, similar to the initial yield
strength in the yield criterion, we must have for any current time t that

(6)

where maxi is the maximum value of i over the time period from 0 to t.
The damage criterion (1) states that damage in the material is initiated when the elastic

complementary energy norm i exceeds the initial damage threshold or. Assuming that dis
a function of the complementary energy norm i only,

d = d(i),

then its evolution can be defined by a rate equation

. ad
d = jlH(i,d) = jl Of'

where jL ~ 0 is the damage consistency parameter.
According to the damage condition (I), the definitions (2) and (7), we have

2
. Y TD- I 'J,l = -::-(1 e (1,

r

where the coefficient y is assumed to be a constant during a load step.

(7)

(8)

(9)
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The Hoffman criterion (Hoffman, 1967) is used to describe the yield behaviour for
pressure dependent anisotropic nonlinear materials. It contains as special cases, the Hill
criterion (Hill, 1947), the modified von Mises criterion (Raghava et al., 1973), and the von
Mises criterion. The geometry of the Hoffman yield surface is determined by six uniaxial
tensile and compressive yield strengths in three orthogonal axes and three shear yield
strengths in three orthogonal planes. The associated theory of plasticity is employed and
the form of the flow role in plasticity follows the normality principle. The classical plasticity
theories, in which the creep and plastic strains are postulated to arise from two independent
constitutive laws, are used in the present coupled creep-elastoplastic-damage analysis;
consequently the inelastic strain is assumed to decompose into two separate parts.

As implicit integration is employed to determine a point in the stress space jointly
satisfying the creep law and the yield and damage criteria, the incremental creep strain,
plastic strain and damage are dependent on the final stress state of the current load
step. The governing equations, therefore, are coupled and a Newton iteration is used to
simultaneously solve for these increments using a standard backward Euler integration.

In the present paper we will put our emphasis on the integration algorithms for the
creep-elastoplastic-damage analysis of anisotropic nonlinear materials with specialization
to isotropic materials. After reviewing the governing equations for the analysis in Section
2, a general algorithm for anisotropic materials is derived in Section 3. The stress vector
and scalar state variables for the increments in creep, plasticity and damage are taken as
the primary unknowns in the Newton-Raphson iteration at a Gauss point and updated
simultaneously. In Section 4, Jetteur's (1986) algorithm which is applicable to an isotropic
elastoplastic material in a state of plane stress is extended for coupled creep-elastoplastic­
damage analysis. In Section 5, we discuss an algorithm for isotropic nonlinear materials
described by the von Mises yield criterion, which integrates the three-dimensional solid,
plane strain and axisymmetric solid stress models. The algorithm takes a particularly simple
form which makes it a very efficient solution procedure for a large class of problems. In
Section 6, a consistent tangent matrix with consideration of the fully coupled effects is
derived to ensure quadratic convergence of the global Newton iterative procedure. A
coupled analysis procedure with three hierarchical phases to update the stress vector and
state variables at a Gauss point is briefly described in Section 7. Some numerical results are
given to illustrate the performance of the present algorithms in Section 8.

2. GOVERNING EQUATIONS OF COUPLED CREEP-ELASTOPLASTIC-DAMAGE ANALYSIS

The total strain Il is decomposed into elastic strain Il
e and inelastic strain Il

i
. In addition,

inelastic strain Il
i is additively decomposed into plastic strain IlP and creep strain Il

C
:

(10)

Based on the thermodynamics of an irreversible process, the elastic strain vector for the
material with linear elastic behaviour is given by

(11)

with

(12)

then the total stress can be written as

(13)
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The Hoffman yield surface can be written in matrix-vector notation as

(14)

For the case of a three-dimensional solid, the stress vector takes the form

and the corresponding stress potential matrix P and vector pare

P=

1/3«(;(\2+(;(\3)

- 1/3(;(\2

- 1/3(;(\3

-1/3(;(\2

1/3«(;(23+(;(\2)

- 1/3(;(23

- 1/3(;(\3

- 1/3(;(23

1/3«(;(13 + (;(23)
(15)

where

(16)

(17)

(18)

(Jij(i,j = 1,2,3) are uniaxial normal and shear yield stresses, and where superscripts t and
c stand for tension and compression, respectively. For pressure dependent materials K 2 is
defined as

(19)

where (J~ and (J~ are generic compressive and tensile yield stresses. They can be assumed to
be piecewise linear functions of the effective plastic strain eP and take the following forms:

(J~ = (J~. 0 + h11IP
,

(J~ = (J~.o+hcIIP.

(20a)

(20b)

With the use of only one internal state variable lIP to the anisotropic yield criterion of
Hoffman, a proportional hardening formulation is assumed in the following analysis, in
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hf;(BP) CC hC(iP)
-c-= =--c- U= 1,2,3),

Uii,y u y
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(20c)

Consequently, the coefficients of matrix P remain constant whilst the pressure-dependent
vector p is a simple function of i P• The considerations for the application ofstrain hardening
with the Hoffman yield criterion will be discussed in detail in another paper.

The introduction of strain hardening in this form enforces the original yield surface
projected on the 1r. plane to retain its shape as it expands during the strain hardening.
Additionally, the intersection of the yield surface with the hydrostatic axis translates accord­
ing to the relative hardening rates (20).

The accumulated effective plastic strain i P can be calculated by the integration of
incremental effective plastic strain AiP as

(21)

where the incremental effective plastic strain AiP is defined as

where for the full three-dimensional stress state M is

(22)

M= 1/2

1/2

1/2

(23)

and AsP is the corresponding plastic strain vector.
The creep function ec is assumed to be independent of hydrostatic stress in the form

i C = f(u, Aec, t),

where the creep effective stress is defined as

The increment creep condition for the time step can then be defined as

(24)

(25)

(26)

It is remarked that as the variation of creep strain with time in the incremental creep
condition is calculated it is assumed that the effective stress and the creep strain are constant
with respect to time. The differentiation of the incremental creep AeC with respect to time
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gives

It results in
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":c (oJ..: oj ..:c)
Ae = 00'0"+ o(MC) Ae At.

ojAt
. au .

MC = oj o'.

1- o(AsC) At

(27)

(28)

The calculation of the derivative of i1 with respect to time from (25) and substitution of (,
into (28) gives

(29)

(30)

Ifplastic yielding occurs simultaneously with creep it is numerically advantageous to express
(25) in terms of the yield stress as

(31)

With the use of the damage consistency condition, the damage consistency parameter J1. for
an incremental step from time t to t+At can be written as

(32)

or in the form of the damage condition

(33)

To consider an incremental step from time t to time t+At, the plastic strain vector tHlsp

and the effective plastic strain IHISp at time t+At are then determined by integration of the
flow and hardening rules over the time step from time t to time t+At :

Similarly the creep strain tHtsc is determined as

(36)

where the second terms on the right-hand sides of eqns (34) and (36) stand for the
incremental plastic and creep strain vectors, AsP and Asc, for the backward Euler algorithm.
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Substitution ofeqns (34) and (36) into (13) at time t+M gives

where the algorithmic modulus matrix is defined as

1187

(37)

(38)

and I is a unit matrix of dimension equal to that of the number of stress components. The
estimation of elastic stress for time t+M is

(39)

The governing equations for the local updates at a Gauss point can then be summarized
as:

(40)

(4Ia)

or

r = At"-At!(ii,t+M,At") = 0,

(4Ib)

(42)

(43)

It is observed that the number ofgoverning equations above is n"+3, where n" is the number
of stress components. The primary unknowns to be solved for the local updates are: the
stress vector (I with n" components, A. (or ii for elastic-creep); At" and Jl.

3. A GENERAL INTEGRAnON ALGORITHM FOR ANISOTROPIC MATERIALS WITH THE
HOFFMAN CRITERION

As the governing eqns (40)-(43) are simultaneously fulfilled at the current iteration k:

Sk = Sk_ 1 +dS = 0, (44)

(45)

(46)

(47)

The Newton-Raphson iteration for the update of the stress vector, plastic multiplier (or
effective stress), effective creep strain and damage consistency parameter at a Gauss point
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can be given as
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oS oS oS oS oS
Otl OA OU oaB" OJl.
oP oFo oFo OP oFo

atl -Sk-l
Otl OA oa oaB" OJl.
oFb oFb oFb oFb oFb

aA -Fk-l

Otl OA ou oaee OJl.
au -FLI (48)

or or or or or fJaB" -rk _ 1

Otl OA oa oaB" OJl. aJl. - fJk-1

ofJ ofJ ofJ ofJ ofJ
Otl OA ou oale OJl.

with the entries in the Jacobian matrix of eqn (48) being

~= = A (for elasticity),

oS 9aB" T dp olpT
Otl = A- (l-d) 4u3 DePtItI P+ (l-d)ADedlP Otl (for elastoplasticity),

oS d) 3aB" D C' 1 ..ou = - (1- 2(,2 ePtI (lor e astlclty),

oS [ dp olP 3aB" (0" T dp OlP) ]
OA = (l-d)De PtI+P+A dlP OA - 4u3 2" OA - 3t1 dlP OA Ptl

(49al)

(49a2)

(49bl)

(for elastoplasticity), (49b2)

with

oS 3
oaB" = (I-d) U DePtI,

~: = HL ~dtlE-De (A(PtI+ P)+ :ua€"PtI)1
oFo olP
Otl = PtI+P+ C. Otl '

C T dp 2 d"
• = tI dlP - 3"dlP'

oFO olP
ax: = C. OA'

oP oFO oFb oFb

oaB" = a; = oaB" = a; = 0,

oFb

-=PtI
Otl '

(49c)

(49d)

(4ge)

(49f)

(49g)

(49h)

(49i)

(49j)
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or
- = 0 (elasticity),oa
or oj 3 ..oa = At oa u PT (elastoplastICIty),

or oj ..oa = -At oa (elasticIty),

or oj I (OK T dp oap
)

oA = - At oa 20' 2K oA - 3a daP oA (elastoplasticity),

or oj
oAe" = I-At oAe'"

or
OIL = 0,

of3 yDe-1a y2De-
1a

oa = - (aTD; la) 1/2 = - r

of3 of3 of3
oA = oMc = oa = 0,

of3
OIL = 1.

The derivatives of the effective plastic strain are calculated from its definition as

08P PM(Pa+p)
oa = 3ii dpT . ,

2A - d8P M(Pa+p)

3a2

08P 2A
ax = 3a dpT '

2A - d8P M(Pa+p)

where

1I89

(49kl)

(49k2)

(49ml)

(49m2)

(49n)

(490)

(49p)

(49q)

(49r)

(49s)

(49t)

(49u)

The three state variables A, Ae" and Il will be obtained by the accumulation of increments
AA, b(Ae") and All in the local Newton-Raphson iterations at each Gauss point.

4. ALGORITHM FOR VON MISES POTENTIAL WITH PLANE STRESS

Following Jetteur's (1986) approach, the current stresses for creep-elastoplasticity with
consideration of damage in plane stress can be given as



1190 X. LI et al.

and the definitions for the creep increment and plastic strain increments are

(51)

(52)

Equation (50) can also be written as

(53)

(54)

(55)

and the estimated stresses, assuming a totally elastic increment, are

(56)

with 1+411l the total strain at time t+At and 'Ili the inelastic strain at time t. The yield criterion
for the plane stress can be written as

(57)

Eliminating O'x, O'y and r from (57) using (53)-(55) we obtain a nonlinear equation in 2, Aec
and d:

F=![ (O'~+O';) ]2 + ~ (0'~_0';)2+4rE2 _1(2 = 0
4 (l-d)(2+Aec)E 4 [3(I-d)(2+Aec)E]2 .

1+ _ 1+------
20'(1- v) 20'(1 +v)

(58)

For an elastic-creep damage analysis without any plastic yielding, I( in eqn (58) is replaced
by the effective stress ii. The equation then relates the damage and creep increments to the
effective stress.

Eliminating the stress vector explicitly from the damage condition (32) results in a
nonlinear equation in 2, Aec and d.

For elastoplastic-strain dependent creep with damage, the Newton-Raphson iteration
for the local updates at a Gauss point can be written as

(59)
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where the Jacobian of eqn (59) can be explicitly given as

of __ I-d [(U;+U~VE 3[(u;-u;)2+4rE
'] 3E ]_

o)" - U C3 2A 3(l-v) + 2B 3 1+v 2Kh,

of = _ I-d [(U;+U~YE 3[(u;-u;)2+4rE
'] 3E J

oJ1ec U 2A 3(l-v) + 2B 3 1+v '

where the components of oujop. are

oUx = ~ (OU. + OUd) " oUy 1 (OU. OUd)
op. 2 op. op.' a; = 2 Op. - Op. ,

[
1 3E -c J

-H 1=d B - U(l +v) (}"+J1B )

B r,

where

[ I E -cJ-H 1=d A - U(l +v) (}"+J1B )

A u.,

Further components of (59) are

or oj
o}" = -M au h,

or oj
oJ1ec = 1- M oJ1ec '

or
-=0op. ,

and for the final row of (59)

op y2 -I TOU
o}" = - i (De u) o},,'

op y2 _1 _ 1 0(1
oMc = - i (De (1) oJ1ec'

op = 1- y2 (D- 1(1)T 0(1
op. i cop.'

with

OU. (l-d)EC3u.• OUd 3(I-d)EC3Ud or 3(I-d)EC3r
8I = - U(I-v)A 'ar = - U(I +v)B 'o)" = - 2a(l +v)B '

ou,. (1-d)Eu. OUd 3(l-d)Eud or 3(I-d)Er
oJ1ec = - 2a(l-v)A' oJ1ec = - U(l +v)B ' oJ1ec - - 2a(l +v)B"
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(60a)

(60b)

(60c)

(60d)

(60e)

(60f)

(60g)

(60h)

(60i)

(60j)

(60k)

(601)

(60m)

(60n)

(600)
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Here the coefficients A, Band C 3 are given as

_ 1 (l-d)(A+~eC)E

A- t 2a(1-v) ,

3(I-d)(A+MC)E
B = 1+ 20'(1 +v) ,

h
C 3 = 1- -:: (A+MC).

(J

(60p)

(60q)

(60r)

5. ALGORITHM FOR VON MISES POTENTIAL WITH PLANE STRAIN, AXISYMMETRIC
SOLID AND THREE-DIMENSIONAL SOLID

It is observed that for the von Mises stress potential with plane strain, axisymmetric
solid and three-dimensional solid, the plastic flow vector calculated at the estimated stress
position is identical to that calculated using the stress satisfying the yield criterion. This
property allows direct scaling of the estimated stresses to return them to yield surface and
has resulted in the development of the radial return algorithm (Simo and Taylor, 1985).

To evaluate the damage condition, a norm of current elastic complementary energy
relating to the total stress vector needs to be calculated. To do this we may decompose the
stress vector into the two parts; one deviatoric the other hydrostatic:

(61)

where

(62)

(63)

where (Jm is the spherical stress:

(64)

mO is the unit vector defining the hydrostatic axis, the plane normal to which is known as
the 1t plane, in the stress space:

The unit vector of (Jd is evaluated as

Pa (2)1/2 nas = IIPal1 = 3" C'

with the flow vector at the stress point a

3
n = -Pa

2a '

and a coefficient

(
3a;a5 )1/2

c= l+~ ,
(J

where a 5 is a vector defining the shear stresses.

(65)

(66)

(67)

(68)
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Equation (61) can then be decomposed into its deviatoric and hydrostatic components
as

(69)

Substitution of eqns (66), (67) and (65) into eqn (69) leads to

where

(70)

m = (I (71)

As the creep strain vector and the plastic strain vector are defined by (51) and (52), the
returned stresses for the von Mises criterion can be written as

(72)

with an elastic estimation of the stress, without consideration of damage, being

and the flow vector at the point tiED in the stress space being

E 3 EO
D = 2iiEO Ptl ,

where

It can be verified that

and then projecting (72) onto the 7r plane gives

ii = (l-d)(iiEO -KdA,+Ae<'»

with the effective elastic stiffness

K _ 3£
E - 2(1 +v)

The summation of the first three equations for the normal stresses in eqn (72) gives

with

(73)

(74)

(75)

(76)

(77)

(78)

(79)

(80)
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Substitution of (76) and (79) into (70) gives

26 E EO
a = 3czD +am (l-d)m. (81)

It is remarked that there are only two independent variables in the expression (81) for the
stress vector, Le. i1 and d.

For creep-elastoplastic-damage with strain dependent creep, the governing equations
can be written as

p= Jl-i(6,d)+lr = 0,

r = MC-Atl= o.

(82)

(83)

(84)

The Jacobian of the Newton-Raphson iteration for the local updates for elastoplastic­
strain dependent creep with damage are explicitly given as

of of
OA = h+ (l-d)KE, oAec = (l-d)KE,

aF
- = H(6EO -KE(A+MC

)),

aJl

ar aj ar aj
OA = - QijAth, oMc = 1- oAecAl,

ap op H
O ~ = l+yZ __ (De-la)TamEm.oAeC = , UJl r

ar
aJl = 0,

(85)

6. CONSISTENT CREEP-ELASTOPLASTIC-DAMAGE TANGENT MATRIX

To evaluate the consistent creep-elastoplastic-damage tangent matrix we start with the
total strain at time t+Al and decompose it into its components:

(86)

Differentiation of both sides of (86) with respect to time gives

(87)

The derivative of elastic-damage strain with respect to time gives

(88)

Calculation of the derivative of du defined in (12) with respect to time and substitution of
(9) and (8) into (12) give

(89)
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We then have from (88) and (89) that

with elastic-damage tangent matrix Oed being

1195

(90)

o = [1+1i1d 0- 1+0- 1 t+lila(O-1 t+lila)T !,+IiIH y2 J-1 (91)
ed (J e e e i (l-d)2

Equation (90) can be expanded by taking the variations of A, l\eCand a as

(( 3l\eC) 9 ( l\eC) T dp (OBl')T) J
- A+ 20- P+ 40-2 Pc- T Paa P+A deP oa da. (92)

The consistency condition of the yield condition (4Ia) can be given as

(93)

If the material hardens with the plastic strain, dA can be obtained directly from (93) as

I (I T oepT
)dA = - - -(Pa+p) + - da.

oBI' C. oa
OA

Substitution of eqn (94) into (92) results in

da = Oedpc dB,

where the consistent creep-elastoplastic-damage tangent matrix is given as

(94)

(95)

(96)

For an elasto-perfectly plastic material, which does not strain harden, the consistency
condition (93) simplifies to

(Pa+p)T da = O.

Equation (92) then takes the form :

da = Ai~'[dB-(Pa+p) dA],

where

SAS 31:9-8

(97)

(98a)

(98b)
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Pre-multiplying (PO'+p)T for both sides of eqn (98a) with the use of eqn (97) gives the
variation of A. as

dA. = (PO' + p)TA;;; I de .
(PO'+p)TAt-;; 1(PO'+p)

(99)

Substitution of eqn (99) for dA. back into eqn (98a) gives the consistent creep-elastoplastic­
damage tangent matrix for an elasto-perfectly plastic material as

D = A-1_ At-;; I (PO' + p)(PO' + p)TAt-;; I

edpe te (PO' + p)TA
t
-;; I (PO", p) (100)

7. IMPLEMENTATION OF ALGORITHMS-A COUPLED ANALYSIS PROCEDURE WITH
THREE HIERARCHICAL PHASES

In preceding sections, three algorithms have been formulated to update the stress
vector 0' and scalar parameters 6", f!' and d with consideration of the coupling effects. In
order to ascertain which processes were active over a time increment of !:J.t a three phase
solution procedure is adopted. The stress vector and three scalar parameters at time t

(101)

are updated to the stress vector and scalar parameters at time t +!:J.t as

(102)

The three phase solution procedure for an iteration from i to i + I can be described as
follows:

(I) in the first phase, creep is assumed to be the only active process, since as long as
the material is in a state of stress, creep will be occurring. A corrector obtained from this
phase can be written as

(103)

(2) if the stress state /+.110"(;+ 1) following the creep relaxation is found to have exceeded
the plastic yield stress a coupled creep, elasto-plastic analysis is performed. The corrector
of phase 2 is obtained as

(104)

(3) finally, the corrector (104) for the second phase is taken as the predictor to evaluate
the complementary energy level. If further damage is indicated the solution is re-calculated
assuming all three processes are active. It is possible during this stage that the softening
due to material damage prevents material yielding. This is indicated by a negative A. on
convergence of the Gauss point iteration. In this case the problem must be re-solved
assuming damage and creep only. The corrector of this phase is the result for the iteration
at time t+!:J.t

(105)

8. NUMERICAL EXAMPLES

The different algorithms developed in Sections 3, 4 and 5 are tested against simple
problems in which a stress history is prescribed and for which simple analytical solutions
may be derived. The plane stress, uniaxial and general anisotropic pressure dependent
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algorithm should produce identical solutions, with the imposition of appropriate boundary
conditions.

Figure l(a) depicts a bar carrying an axial load. It is restrained against axial displace­
ment, but is free to move in the plane orthogonal to the axial direction so that at equilibrium
it is in a state of uniaxial stress. It is modelled using solid, plane stress and bar elements.

p
unit thickness

(a)

II I

1 I

0, ...

r

...
..~ ".

X E3

0.100
.... 0.090II.....

lJ) 0.080

0.070

0.060

0.050

0.040

0.030

0.020

0.010

0.0
0.0 0.03 0.05 0.08 0.10 0.13 0.15 0.17 0.20 0.23 0.25

Strain

Fig. I(a). Test bar geometry. (b) Uniaxial elastic-damage test using the three solution algorithms.
Legend: analytical--; LUSAS general algorithm (Section 3) (!); LUSAS plane stress algorithm

(Section 4) + ; LUSAS uniaxial algorithm (Section 5) L::,..

(b)
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Example 1. Elastic damage
The first example considers elastic damage. The bar is cycled in tension over three

cycles with an increasing peak stress:

Cycle I: Stress (1 0-40,40-0,

Cycle 2: Stress (1 0-60, 60-0,

Cycle 3: Stress (1 0-90,90-0.

The damage model of Simo and Ju (1987a, b) defined by the damage potential function

°r(l-A)
d(i) = 1- I -A exp [B(Or-'r)]

r

is used. Setting the elastic and damage parameters as

E = 2000, v = 0.3,

Or = ¥S, A = B = 1.0.

The axial elastic strain e is then given by

(1

e = (I-d)E

and the damage potential (106) reduces to the form

(
11 I )d= l-exp 25 - EI/2(1 •

(106)

(107)

(108)

The variation of d with stress in (108) is defined by conditions of continuing damage (6).
The onset of damage occurs when the initial threshold is breached at a stress level of

(1 = E 1/2 ¥So (109)

Figure l(b) illustrates the limiting stress at increasing levels of strain enforced by (108) as
well as the degradation in the elastic stiffness (shown by the decrease in gradient during
elastic unloading) following further damage. Exact agreement was achieved using all stress
types and algorithms with (108).

Example 2. Elasto-plastic damage
Retaining the geometry and material properties of example I and defining the plastic

yielding as

(110)

where (10 = 22.0 and h = 100, the elasto-plastic damage behaviour of the algorithms can
be verified.

The bar is subjected to a stress cycle of

Phase 1: stress (1 0 to 60,

Phase 2: stress (1 60 to -90,

Phase 3: stress (1 - 90 to O.
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Since a stress history is prescribed, the damage and plasticity can be treated as separate
processes. Considering damage first; as before it is defined by eqn (108), however, (1 is now
replaced by its absolute value to account for the stress reversals

(111)

Plastic straining occurs once the stress level exceeds the current yield stress (1y (110). Thus
the level of effective plastic strain following yielding is

(112)

where (1y is the maximum value of absolute stress in the loading period to date. During the
first loading phase, damage is initiated at the stress level defined by (109), followed by
elasto-plastic yielding as the yield stress is exceeded. The variation of axial strain for this
section of the loading is given by

(113)

Following the stress reversal, phase 2, no further damage or plastic yielding occurs until
the axial stress reaches - 60, at which point both processes resume. For this stage of the
loading, both the effective plastic strain and damage parameters increase. The uniaxial
plastic strain component, however, reduces from its peak value. Equation (113) is, therefore,
replaced by,

(-60>(1> -90), (114)

where ego is the maximum tensile uniaxial plastic strain attained in the tensile loading phase.
During phase 3, elastic unloading takes place. Figure 2(a) shows that exact agreement was
obtained.

The present example is re-run by using the Oliver damage model with the ratio n = 2
of the compressive over the tensile damage strength. The bar is subjected to a stress cycle
of

Phase 1: stress (1

Phase 2: stress (1

oto 45,

45 to -100,

Phase 3: stress (1 -100 to O.

It is illustrated in Fig. 2(b) that further damage in the load path from +45 to -100 is only
produced beyond - 90 instead of - 45 since the model parameter n = 2 is specified.

Example 3. Pressure dependent elasto-plastic damage with creep
The verification of the solution algorithm for pressure dependent materials follows the

same form as the preceding examples with the definition of a stress load path, however, in
this case a three-dimensional stress field must be prescribed. For simplicity, the modified
von Mises form of the stress potential (14) is adopted. To simplify the calculation of the
norm of the elastic complementary energy, Poisson's ratio is set to zero. Young's modulus
and the geometry retain the same values as in the preceding examples.
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X E3

: 0.100
II...
ti O.OBO

(a)
-0.20

0.060

-0 0

-0.100

0.20 0.30 0.50
Strain

(b) 0.40

Strain

Fig. 2(a). Uniaxial elastic-plastic damage test using plane stress and general solution algorithms.
Legend: analytical--; LUSAS general algorithm (Section 3) (!); LUSAS plane stress algorithm
(Section 4) A. (b) Uniaxial elastoplastic damage test for Oliver damage criterion using three­
dimensional solid elements and general solution algorithm. Legend: LUSAS general algorithm

(Section 3) (!) .

Splitting the stress vector into its deviatoric and pressure dependent components

(1 = qD+aH, (115)

where D (a unit vector in the 1t-plane) defines the deviatoric component and H (a unit
vector along the hydrostatic axis) the hydrostatic. Substituting (115) into (14) yields

Setting the compressive and tensile strain hardening to be

(116)

(117)
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and defining the deviatoric and hydrostatic loading parameters as functions of time t

q = 4t, IX = 2(3 1
/
2)t.

1201

(118)

Substituting (118) into (116), the variation of effective plastic strain with time becomes

(119)

To obtain the individual plastic strain components, it is necessary to specify the deviatoric
and hydrostatic load vectors. Considering the three direct stress components only, the
vectors are defined as

T [ I I JD = - 2 1/2lf7I0 T [I 1 IJand H = 3W3W3W . (120)

From (34) the plastic strain components may then be written as

substituting the components (121) into (22) gives Aas

(121)

(122)

The plastic strain components can then be evaluated using (120)-(122). In addition to
plastic straining, creep strain is also introduced into the problem using the rate form of the
power law

where the equivalent stress is given, for the current loading, by

(j = (3/2) 112q = 4(3/2) 112t.

Introducing the numerical values

Ac = 0.5x 10-6, n = 5, m = -0.5

and integrating, the creep strain becomes

and the component in the x-axis direction is, from (36),

(123)

(124)

(125)

(126)

Equations (125) and (126) define the variation of creep strain in the x-axis direction with
time.

Finally, the damage criterion is evaluated. Substituting (115) into (2) gives

(127)



X. LI et al.1202

c
0 3.500-...
u
II
L-- 3.000
."

II...
0 2.500c-
."
L-
0
0 2.000
u

)(

C , .500-...
C
II

1.000c
0
Co
E
0
u 0.500
VI
VI
II
L-

0.0....
en 0.0 0.20 0.40 0.60 0.80 1. 00 1. 20

x

1. 40

Strain component in )( coordinate direction

Fig. 3. Prescribed stress loading of pressure dependent material with creep and damage. Legend:
analytical-; LUSAS general algorithm (Section 3) x.

and substituting the loading functions (118) into (127) gives

__ (28)1/2
or - E t.

The damage parameters for Simo's model (106) are set to

A = B = 1.0, or = 0.08.

Thus, once the damage threshold is exceeded, the damage is given by,

(128)

[ (28)1/2 ]
d=l-exp 0.08- E t, (

E)I/2
t> 0.08 28 (129)

Figure 3 illustrates the variation of total strain in the x-direction with the corresponding
direct stress component. Again, good agreement is found.

Example 4. Approximate modelling ofa polymer
The behaviour of a polymer under cyclic loading results in a looping path in which the

material stiffness is greater during loading than during unloading. The polymer also exhibits
increasing strain as the stress level decreases beyond the point ofmaximum stress (Browning
et aI., 1984). This example demonstrates how the form ofsuch a curve may be approximated
and how the different components of plasticity, creep, visco-elastic recovery and damage
may be combined to reproduce this type of behaviour. Browning et al. (1984) model the
polymer using a creep and damage function as the rate ofloading is seen to have a significant
effect on the material behaviour.

The model geometry and uniaxial loading will be as in the first two examples. The
cycle of loading is
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(J: 0-10-0 in a time of 2.0,

(J: 0-12-0 in a time of 2.4,

(J: 0-14-0 in a time of 2.8,

1203

where the stress varies linearly with time between these points.
As a first approximation to the polymer behaviour, the damage potential is introduced

as a linear function:

d=~ ,
(Jrnax

(130)

where (1max is the maximum permissible stress level. Damage is assumed to start as soon as
loading is initiated. Time independent plasticity is also in~roduced :

(131)

The model parameters are chosen to be

E = 40, (1max = 20, (10 = 5, h = 50.

Figure 4(a) illustrates the resulting time independent stress against strain relationship. Time
dependent plasticity is now included in the form

(132)

where creep parameters are set to

Ac = 5 X 10- 4
, n = 4, m = 1.

As shown in Fig. 4(b), the introduction of creep results in the rounding of the stress-strain
curves. In particular, the effect of increasing strain whilst the stress is reducing is now
included. This arises from the difference in rates ofcreep straining to elastic strain recovery.
As the stress reduces, the elastic recovery ofstrain predominates. Reloading follows approxi­
mately the same path as the unloading. Finally, to model the reloading along a different
path (from the unloading) a visco-elastic strain is introduced, whose rate of recovery is
inversely proportional to the stress level. (The introduction of visco-elasticity in this form
is only valid for uniaxial stress conditions. For multiaxialloading, the components in each
component direction would need to be included.) The rate ofvisco-elastic strain is integrated
into the combined model in the form

and setting

bev

eV = a(1-­
(1

a = 0.01 and b = 5

(133)

which results in an increase in visco strain recovery at lower stress levels with an infinite
recovery at zero stress. Reloading initially occurs along an essentially elastic path as all the
visco-elastic strain will be recovered once the stress reduces to zero. Figure 4(c) illustrates
this behaviour. Very small steps were taken as the stress approached zero. To overcome
the infinity inherent in the visco-elastic definition (133), the stress was reduced to 0.001
instead of zero. It is noted that a stand-alone program was written to explicitly integrate
the rate equations. 20,000 steps were taken so that the solution is considered to be a target

SAS 31:9-8*
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solution. The crosses in Figs 4(b) and 4(c) indicate solution points from the corresponding
implicit integration using the uniaxial formulation. In general, the implicit solution per­
formed well.

Example 5. A cylindrical shell subjected to self weight
The cylindrical shell shown in Fig. 5(a), is simply supported at both ends and free on

its straight sides, and is subjected to a uniformly distributed self-weight load increasing to
collapse. Taking advantage of symmetry the calculations are carried out for a quarter of
the shell. The material is assumed to be elastic-perfectly plastic with the elastic property data
being E = 2.IE7 and v = O. The Hoffman criterion is employed to describe the nonlinear
anisotropy of the material with the uniaxial yield stresses:

0'\ l.y = 4.3E4, a11,y = ai2.y = a~2,y = al33,y = a~3,y = 4.3E3,

a12.y = a23,y = a31,y = 2.4E3.
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Fig. 4(a), Modelling of polymer type behaviour. Stage I: combination of damage and time­
independent plastic flow. (b) Modelling of polymer type behaviour. Stage II: combination of
damage and time-dependent and time-independent plastic flow. Legend: target --; LUSAS

uniaxial algorithm (Section 5) x,
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Fig. 4(c). Modelling of polymer type behaviour. Stage III: combination of damage and time­
dependent and time-independent plastic flow and visco-elastic straining. Legend: target --;

LUSAS uniaxial algorithm (Section 5) x.
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Simo's damage model is used with the damage property data or = 0.8, A = B = 1.0. A
4 x 4 x I mesh of Semiloof elements is used to discretize the shell. Figure 5(b) shows the
load-displacement curve with damage compared to that obtained without damage. The
inclusion of damage results in a reduction of the total load carrying capacity from 4.6 KN
to 4.1 KN.

9. CONCLUSIONS

A versatile nonlinear material model has been derived which is capable of efficiently
describing time dependent, and time independent plastic flow as well as the degradation of
material strength defined by an isotropic damage model. The formulation allows the use of
each element uniquely, or in combination with the others, to cover a wide range of engin­
eering materials. A polymer example was presented to illustrate how the combination of
these elements can reproduce quite complex material behaviour.

The isotropic models take on exceptionally simple forms which makes them com­
putationally very efficient. The extension of these models in particular, to include addition­
ally effects such as hysteresis and visco-elasticity should present few obstacles, whilst
retaining a high degree of numerical efficiency.
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